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THREE-DIMENSIONAL COLLISION INDUCED VIBRATIONAL
TRANSITIONS IN HOMOGENEOUS DIATOMIC
MOLECULES
C. Frederick Hansen and Walter E. Pearson

Ames Research Center

SUMMARY

The one-dimensional, semiclassical theory of vibrational transitions in
diatomic molecules is extended to three dimensions. Simple exponential inter-
action potentials are assumed and are spherically averaged to determine the
collision trajectory that defines the perturbation. For use over the range of
temperatures where small perturbation theory applies, fully analytic approxi-
mations are derived for the cross sections, the rate coefficients, and the
relaxation rates. Vibrational transitions (predominantly changes of one
vibrational level) are found to be accompanied by simultaneous rotational
transitions (predominantly changes of zero and two rotational levels) with
the result that vibrational transition rates are increased by 50 percent or
more.

The three-dimensional theory enables one to determine both the gradient
and the magnitude of the potential, whereas only the gradient can be deter-
mined with one-dimensional theory. The theory can be fit to data reasonably
well by appropriate choice of an "effective' interaction potential. This
potential is considerably steeper and of shorter range than potentials appro-
priate for scattering. This is consistent with the concept that many inter-
action potentials exist for molecules, just as for atoms. We conclude that
the steeper inner potentials are primarily responsible for vibrational transi-
tions, whereas the outer potentials are primarily responsible for scattering.

INTRODUCTION

Rates of vibrational transition produced by molecular collisions are
involved in a number of gasdynamic problems. Vibrational modes of energy
influence shock-wave structure, cause dispersion of sound, and are responsible
for sizable variations in the equation of state, for example. The rate at
which these modes are excited becomes important whenever it is comparable with
the rate of change in gas properties generated by flow processes, sound waves,
or other means.

Vibrational modes of the atmospheric gases are excited so little at
normal temperatures that they can often be neglected entirely. However, aero-
dynamicists grew interested in vibrational relaxation with the development of
supersonic flight; at that time, gas temperatures sufficiently high to excite



vibrational energy of air were produced in flow about vehicles and in shock
tubes. Interest continued to grow as higher speed flight generated still
higher temperatures and dissociation of molecules became an important energy
sink in the flow, since it was soon recognized that the rates of dissociation
and recombination were directly coupled to the vibrational transition rates
(refs. 1-3). Recently, the gas laser has kindled still further interest in
vibrational excitation and coupled rotational transitions, since the optical
transition stimulated in some gas lasers occurs between a select pair of
vibration-rotation levels, and the rate of population or depopulation of these
levels by collision is one of the factors affecting laser operation.

So many studies of vibrational excitation have been made that it is
hardly practical to recall all of them here. However, the principal methods
of attack on the problem can be summarized by reference to a few selected
papers. A classic paper by Landau and Teller (ref. 4), in 1936, analyzed the
one-dimensional collision excitation of harmonic oscillator vibrations in
connection with the dispersion of sound. Using simple, classical arguments
about the form of the impulse produced in collision, they deduced that, to a
first approximation, the vibrational relaxation rate should vary as
exp[-(8/T)1/3]. Probably every set of measured vibrational relaxation rate
data ever obtained for diatomic gases has been compared with their result,
generally with reasonably good agreement (see refs. 5-9, for example). The
Landau-Teller model was refined somewhat by Bethe and Teller (ref. 10) in
1945, 1In 1952, Schwartz, Slawsky, and Herzfeld (ref. 11} carried through a
formal quantum treatment of energy exchange during one-dimensional collision
between harmonic oscillators, based on the work of Zener (refs. 12 and 13)and
Jackson and Mott (ref. 14). Takayanagi (ref. 15) independently published
similar results. This work has been widely accepted as the most rigorous
practical analytic approach to the problem. Schwartz and Herzfeld followed
their study with a quantum treatment of three-dimensional collisions (ref. 16)
based on the method of partial waves (ref. 17) in a manner similar to that of
Takayanagi (ref. 15). Although they did not derive expressions for the cross
sections - which, in principle, can be done with three-dimensional theory -
they were able to conclude that the transition probabilities have the same
functional form in the three-dimensional case as for the one-dimensional
collisions. Treanor, Rich, and Rehm (ref. 18) used the one-dimensional
Schwartz-Slawsky-Herzfeld theory to investigate effects of anharmonicity on
vibration-vibration exchange.

An alternative approach is the semiclassical or impact parameter method
in which the classical trajectory of motion between gas particles is used to
obtain a time dependent perturbation potential; then transitions produced by
this perturbation are calculated by quantum principles. Since the de Broglie
wavelengths of heavy gas particles are normally much smaller than the scale-
size of the potentials involved, the classical trajectory is a good approxima-
tion and the semiclassical results are potentially as accurate as needed for
most practical purposes. In fact, Rapp (ref. 19) showed that a complete
classical theory for the one-dimensional collision excitation of harmonic
oscillators, from the ground state to the first excited level, gives exactly
the same results as the complete quantum treatment by Herzfeld (ref. 20)}.
However, in the more general case involving transitions between upper vibra-
tional levels, or vibration-vibration exchange, it is necessary to evaluate
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the wave function transition matrix elements to get correct results. Rapp and
Sharp (refs. 21,22) used the semiclassical method to investigate the vibra-
tional excitation produced by such high energy collisions that small perturba-
tion theory fails, and Rapp and Golden (ref. 23) analyzed the resonant and
near resonant vibration exchange with the semiclassical approach, all for one-
dimensional collisions. Kerner (ref. 24) developed analytic expressions for
the quantum mechanical transition probabilities of harmonic oscillators, sub-
ject to large perturbation forces where multiple quantum jumps occur, as func-
tions of the energy transfer to a classical forced oscillator; and Treanor
(refs. 25,26) showed that these solutions are consistent with the numerical
solutions obtained by Sharp and Rapp (ref. 22). Of the three basic methods
available (quantum, semiclassical, classical), the semiclassical method is
usually simplest, although the classical collision trajectory used in it does
not correctly conserve total energy in the collision.

Although one-dimensional collision studies lead to the functional form of
the transition probabilities, it is necessary to make an educated guess for a
"steric factor" or a '"total cross section'" in order to transform such transi-
tion probabilities into excitation cross sections and ultimately into rate
coefficients. An absolute derivation of the cross sections must be based on a
three-dimensional model of the collisions. Calvert and Amme (ref. 27) related
the one-dimensional treatment to a three-dimensional model in an approximate
way in order to arrive at a cross section, but did not fully consider the
three-dimensional details of the collision process with coupled rotations.
Mies and Shuler (ref. 28) extended Shuler and Zwanzig's treatment (ref. 29) of
harmonic oscillator transitions to three dimensions, but for impulsive colli-
sions that are recognized to be not very realistic, and by numerical methods
that do not yield analytic relations. Thus, there is need for a further look
at three-dimensional collision effects on vibrational transition.

The present paper extends the semiclassical method to three-dimensions
and provides expressions for the vibrational transition cross sections and
rate coefficients, including the effects of simultaneous rotational transi-
tions, in terms of exponential interaction potential parameters. The method
is then further extended to account for conservation of energy, and the
effects of distortions in the classical trajectory, caused by reversible and
irreversible transfer of energy to the vibrational mode, are assessed. The
values of the potential parameters are found which best fit available experi-
mental data for vibrational relaxation. Simple analytic approximations are
deliberately extended as far as possible, even at the sacrifice of some
accuracy, so that the general functional behavior of the cross sections and
rate coefficients for vibrational transitions can be followed more readily.

GENERAL DISCUSSION OF THE PROBLEM

The problem considered here starts from a given interaction potential
between colliding molecules and ends with the derivation of a rate coefficient
and a relaxation time for vibrational transitions. The analysis proceeds by
the following steps:



The interaction potential between a homogeneous diatomic molecule and an
inert collision partner is assumed to be a simple superposition of exponentials

U=a Y e Ti/L 1)
i

where the r; are the distances between the inert gas particle and each atom
of the target molecule. The constant A establishes the energy scale, and

L is a characteristic length that establishes the potential gradients. In
the more general case, where the vibrationally excitable molecule is inhomo-
geneous, separate constants Aj and Lj must be used for each atom of the tar-
get molecule, of course. According to results from scattering and viscosity
measurements, or from quantum mechanical calculations - for the few cases
where they are available - it appears that typical values of A are the order
of several hundred eV, and that L 1is a fraction of an Angstrom.

The classical trajectory of relative motion between the gas particles is
next determined for the spherically symmetric part of the interaction poten-
tial. This trajectory defines the impulse-like perturbation of the target
molecule; the perturbation U is a function of time t, the coordinates of
the molecule q (which represents a set of generalized coordinates q;), the
collision energy E, the impact parameter b (initial miss distance between
the approaching gas particles), as well as the potential parameters A and L.

U= U(t,q,E,b,A,L) (2)

If the perturbation is small, or of very short duration, the probability
of transition from state n to n' may be calculated according to small-
perturbation-quantum theory. The calculation involves the integration of U,
weighted by the product of the initial and final state wave functions, over
all space and time. Thus, the variables t and q are eliminated, and the
transition probability takes the form

P =P (Eb,AL (3)
Generally, small perturbation theory will suffice when comparisons can be made
with experimental vibrational relaxation times. However, if the analysis must
be extended to very high collision energies, the small perturbation result
exceeds unity and the effects of coupling between adjacent states must be
taken into account. With the approximations used by Kerner (ref. 24), the
multiple transition probabilities that result from such large perturbations
can be expressed as functions of the small perturbation transition rate from
the ground state to the first excited state. Thus, in one form or another,
the transition probabilities have a functional dependence as expressed in
equation (3).

The collision cross section for transition is just the sum of the
elements of cross section 2nb db weighted with their corresponding transi-
tion probabilities. Thus, cross section is a function of E, A, and L only

Spnt (B,A,L) = J;” P__,2mb db (4



The rate coefficient is obtained by averaging the cross section over all
collision energies. In most cases, collision energies have a Boltzmann dis-
tribution, and the rate coefficient may be expressed as

o L (T,AL) =T j; S+ (x,T,A,L)x e X ax (5)
The variable of integration x is the dimensionless collision energy E/kT
and the factor U 1is the root mean square velocity. The dependence of cross
section on E 1is transformed to the dependence on x and T for the purpose
of integrating over all x, so the rate coefficient appears as a function of
temperature T as well as the potential parameters A and L. 1In the more
general case, the potential could be a function with as many parameters as
desired, of course.

Finally, if the molecules are assumed to be harmonic oscillators, the
relaxation time is very simply related to the rate coefficient (ref. 20)

1

T(T,A,L) = najg[l - exp(-hw/kT)] ©

where n is the molecule number density.

With this introduction to the steps to be followed, we are now prepared
to discuss the semiclassical model of vibrational excitation in more detail.

SEMICLASSICAL TRANSITION RATE MODEL

Quantum Perturbation Theory

A brief review of the quantum mechanical perturbation method for
calculating transition rates will be helpful for the purpose of discussing the
perturbation potentials. The method begins by expressing the wave function
¥ of the system during collision as a linear superposition of the orthonormal
set of wave functions ¢, that describe the system in its unperturbed states

~iEyt/h

¥(q,t) = D an(t)u,(q)e @)

n

The generalized coordinate ¢q is understood to represent all the space
coordinates involved in the problem, and E; 1is the energy of the nth
quantum state of the unperturbed system. If the total wave function is nor-
malized, the squares of the absolute values of the coefficients a,(t) can be
interpreted as the probability that the system will be in the state n at the
time t. Thus, these squares sum to unity.




> lag2o)] =1 (8)

n

The wave function of equation (7) is introduced into Schroedinger's time
dependent equation

¥

HY = ih (9)

in which the Hamiltonian operator H 1is expressed as the sum of the
Hamiltonian for the unperturbed system H® (which is independent of time) and
the perturbation energy U created by collision (which is a function of both
molecular coordinates and time)

H = H°(q) + U(q,t) (10)

When both sides of equation (9) are multiplied by the complex conjugate wave
functions Y5+ exp(iEnit/h) and integrated over all space, the differential
equations for the coefficients ap: are obtained

. i iw t
any = - E':;: an(t)Hnn,(t)e nn' for n' =1,2,3, . . . (11)
where the circular frequency is

t
w _, = 2T (12)

and the transition matrix element Hnn' is

Ho () = <§;.Cq)IU(q,t)lwn(€}> (13)

Equations (11) are a coupled set that must be solved simultaneously for
all the coefficients ap, subject to the given initial conditions at t = -w.
In the present case, the molecule is known to be in the state n before
collision, so the initial conditions are

1 if n' =n
(=) =8 ., (14)

The final values |an,(+w)l2 represent the probability that the collision has
caused transition to the state n'.



In some cases the deviation from the initial state is small throughout

the collision. Then the differential equations for the coefficients a ., are
uncoupled and become
. i lwpnt
an, = - E-Hnn,(t)e nn (15)
The transition rate P__, is
nn
1 (7 T
2 w
Pnn' =‘an'(+oo)| = ?{f H,,, (t)e nnt* dqt¢ (16)

The quantity Pp,, can be interpreted as a transition probability only
if it is small compared to unity. This will normally be the case at the rela-
tively low collision energies which obtain when kT << hw,,,. In fact, over
the range of temperatures where measured relaxation times are available for
comparison with theory, P, 1is usually less than unity, even where kT is
somewhat larger than hw. However, at very high temperatures, Pon' can
exceed unity and cannot then be identified as a probability. Physically, it
represents a transition rate between states in the coupled set of equa-
tions (11). In principle, the coupling can be taken into account for strongly
perturbed harmonic oscillator transitions, by an approximate method developed
by Kerner (ref. 24), which yields transition probabilities as a function of
Pgy. Thus, calculation of Py; is the first step in the solution of the
problem in either case - weak or strong coupling.

The matrix element Hpn: needed for the calculation of Pppy is
obtained from equation (13) once the perturbation energy U(q,t) is defined.
An approximation to this perturbation energy for homonuclear, diatomic
molecules is developed in the next section.

Approximate Perturbation Energy for Homonuclear
Diatomic Molecules

The coordinate notation used to analyze the three-dimensional collision
between a homonuclear, diatomic molecule and an inert collision partner is
shown in figure 1. The center of tiie diatomic molecule is the origin (only
one atom of the molecule is shown in figure 1; the second atom is understood
to be symmetrically placed about the origin). The trajectory of relative
motion between the particles is assumed to be determined by the spherically
symmetric part of the interaction potential, in which case the trajectory
(shown by the dashed curve) lies in a single plane (the x-y plane of fig. 1).
The point of closest approach is taken to be on the x-axis a distance o
from the origin. The distances between the inert particle and the center of
the molecule, the center of atom 1, and the center of atom 2 are designated by
r, r1, and rp, respectively. The angle between the x-axis and the vector T
is ¥x. The distance between atoms 1 and 2 is p, and the orientation of the
molecular axis is defined by the polar angle 6 from the =z-axis and the



Figure 1.- Diagram showing collision coordinates.

azimuthal angle ¢ from the x-axis. Then the distances 1r; and rp are

2 = rz[l - % sin 6 cos(d - X) + (Zp—r)z} (172)

- 1'2[1 + 2 sin 6 cos(e - X) + (701_-)2]

r




Collisions are assumed to be weak enough that (p/r) < 1 for all r. Then,
reasonable approximations for the distances r; and ry are

b

R
H
|

%—sin 8 cos(9p - X) (18a)

Ty, =T 4+ %—sin B cos{(d - X) (18b)

At this point the perturbation potential is taken to be a linear super-
position of exponential repulsions, as in equation (1)

U = A(g'rl/L + e_rZ/L) = 2Ae—r/L cosh[gf sin 6 cos (¢ - Xi] (19)

The bond length p is very nearly equal to its equilibrium value pg,
and the angle X 1is small in the region where the perturbation contributes
appreciably to the Fourier transform. Accordingly, the perturbation is
expanded to terms of first order in p - Pe and X

. Pe A Pe A X p-p
sin 6 cos{¢~ X) *=— sin 6 cos ¢+ X =— sin 6 sin ¢+

e .
5T 5T sin 8 cos ¢ (20)

£ <
2L 2L

Then, if 6 = p /2L

U = 2Ae_r/L[}osh(6 sin 6 cos ¢) + X8 sin 6 sin ¢ sinh(8 sin 8 cos ¢)

p-p
2L

+

© sin & cos ¢ sinh(8 sin 6 cos ¢)] (21)

The spherically symmetric potential used to determine the collision
trajectory is obtained by averaging over all configurations. The last two
terms vanish because of asymmetry in ¢ and (p - pe), and the part remaining
is

-r/L sinh §

T = 2ae" /L cosh(§ sin 6 cos ¢) = 2Ae 5

(22)

This spherical averaging procedure is common practice in quantum treatments,
and often seems justified by the results. It is also justified in classical
treatments of the motion when o >> p. Although o may not exceed p by a
large margin, the inequality o > p 1s usually satisfied at least, so the
error in the approximation of spherical symmetry does not grow unreasonably
large.



The constant A will be defined as

'K=2A§%§— (23)

This constant represents the effective potential size parameter for the total
spherically symmetric potential when the effects of the two separate atoms in
the molecule are added. The perturbation is now expressed as

sinh §

U='Ube—[(r—0)/L] _S [cosh(d sin 6 cos ¢) + X8 sin 6 sin ¢ sinh (8 sin 8 cos ¢

p-p
2L

+ © sin 0 cos ¢ sinh(8 sin 6 cos ¢)J (24)

— -g/L

where U, = Ae
approach.

, the spherically averaged potential at the point of closest

The first two terms in equation (24) are functions of only the rotational
coordinates and are responsible for elastic scattering (Al = 0) and pure
rotational transitions (AZ # 0). The third term is linear in (p - pe) and
leads to vibrational transitions as well, which in the harmonic-oscillator,
small-perturbation approximation consist of single vibrational quantum jumps
(Av = *1). However, the appearance of the factor sin 6 cos ¢ sinh(s sin 6cos ¢)
in this term means that these vibrational transitions can be accompanied by
simultaneous rotational transitions, a feature missing from the one-dimensional
collision model.

As far as vibrational transitions are concerned, the effective perturba-
tion is just the third term, which may be expressed as

ﬁbe_[Cr_O)/L] (p'pe> (§ sin 8 cos ¢)20

sinh & 2L 2n - D! (25)

U =
n=1

From the symmetry of the angular coordinates, rotational transitions are
limited to an even number of quantum jumps. Thus, the symmetry of the
diatomic molecule's rotational wave function is preserved in these transitions,
consistent with the expectation that collision perturbations are not likely to
change nuclear spin. If nuclear spin is unchanged, rotational symmetry must
be preserved to maintain antisymmetry of the total wave function.

The summation of equation (25) is uniformly convergent, even though §
is normally greater than unity. For typical values p, =1 RAand L = 0.2 A,
§ 1is about 2.5. Then the first two terms of the perturbation are about
equal in mangitude, but the third term is only 15 percent as large as the
first two, while the fourth term is only 2 percent as large and succeeding
terms become very small. In view of these magnitudes, it is obviously neces-
sary to carry at least the first two terms of the expansion; to simplify the
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analysis we shall truncate the perturbation at this point, however.

e~ [(x-0)/L] _ 82 (p-pe>(. 2 0 L 82 iy )
U = Uge Sinh 3 T, sin“ 6 cos“ ¢+ g~ sin 6 cost ¢ (26)

In this case, the coupled rotational transitions are limited to AZ=0, 2, 4,
The various overlap integrals and the matrix elements resulting from the per-
turbation of equation (26) are worked out in appendix A. The truncation does
not seriously affect the value of sinh 8, so this factor is retained without
change.

The factor exp[-(r-o0)/L] contains the functional dependence on time
which determines the magnitude of the Fourier transforms in equation (16).
The classical equations of motion will next be used to develop an
approximation for this time-dependent factor.

Classical Trajectory Impulse Functions

The classical trajectory for a spherically symmetric potential lies in a
single plane as shown in figure 2 (the x-y plane of fig. 1). The velocity
of relative motion at large r is u,
and the impact parameter b 1is the
initial miss distance. Energy and
angular momentum changes involved in
the internal state transitions of the
diatomic molecule will be neglected
compared with the kinetic energy and
angular momentum of the collision
partners, so that the latter can be
treated as conserved quantities.
(Later some adjustments will be made
to account for conservation of total
energy.) Conservation of the angular

Figure 2.- Classical trajectory of relative motion momentum of the collision partners
between particle P and molecule M, requires that

mrzk = mub (27)

while conservation of energy requires that

. _ 2
3’2‘— (2 + r2%2) + U(r) = % (28)

where m is the reduced mass of the two collision partners and U(r) is the
spherically symmetric average potential obtained in equation (22). Solving
for X from equation (27) and substituting in equation (28), one obtains

11



o 2U(x) ] PE_I/Z
Ir] = u[l iy rz] (29)

At the distance of closest approach r vanishes by symmetry (for an elastic
collision) and from equation (29)

20
b2 = 02( - —C2’> (30)

mu

Precise knowledge of the potential is most important near the turning
point where the perturbation is largest. Expansions about the point of
closest approach (t = 0) yield the even function for the perturbation impulse
U(t)

Tty = ﬁOe-[(r-o)/L] . er-[(fOtZ/zL)+(réVt“/24L)+. . (31)

and the odd function for the angle x(t)

. o t3
X(t) = Kot + Ky = - . (32)

All time derivatives at the turning point may be evaluated in terms of L, b,
and o (i.e., 15)

UO u2b2
ro = .]E + 03
(33)
iv Uo 3ulb?
T = -\ —
° mL?2 ot °
ub
XO = 5—2—
— 34)
3 (
.)_(. _ 2u3b3 1 s UOO'
°o" " F mu?Lb2

For most purposes it would be sufficient to use just the first term in
the expansion for X, but, as we have seen, this quantity is not needed for
calculations of vibrational transitions anyway. Only the exponential function
in equation (31) is needed for this purpose, and this function is very sensi-
tive to the exact value of r. The first exponential factor falls too rapidly
as t2 increases. The following factors oscillate in sign of the exponent,
and the total expression does not converge very rapidly. Thus equation (31)

12



is not very useful as it stands. However, for the exponeﬁtial potential form
an exact solution does exist for head-on collisions (refs. 12, 13, 19)
(b = 0, Uy = mu?/2)

U(t) = U, sech?(at) (35)

The constant a is u/2L when b = 0. Now it is anticipated that the most
effective collisions are those where the miss distance is small, since these
penetrate deepest into the potential and cause the strongest perturbations.
Therefore, we choose a solution with the same form as equation (35) that will
reduce to the exact solution when b = 0, but let the constant a take the
value that gives the correct first-order terms in the expansion of the three-
dimensional trajectory about the point of closest approach

T jij 24,2
2_.-0_1 (20, u®d”
) ) (mL M > (36)

We shall define e as the fraction of the collision kinetic energy that is
transformed into potential energy at the point of closest approach

20 U

0 (o]
- ] 37
cTmZ T E (37)

In terms of ¢, the constant a may be expressed

=gy [-a-a0-2) (38)

This value of a gives the correct form near the turning point at the expense
of some mismatch in the asymptotic behavior. The particles should recede from
one another with a velocity u at very large time, while the asymptotic form
of equation (35)
172
oy -(ut/L){1-(1-e)[1-(2L/c)}]}
mu
) e (39)

- — -2at
U(t) 2:0: 4er a = 4¢ (—2——

corresponds to an escape velocity wu{l - (1 - ¢)[1 - (2L/o)]}1/2. Even so,
equation (35) is a far better approximation than the simple expansion of
equation (31), for the asymptotic behavior is correctly described as e - 1.
Actually, we need not be particularly concerned with the slowly varying per-
turbation far from the turning point, since this portion does not contribute
appreciably to the Fourier transform in equation (16). Rather, an approxima-
tion is required which is nearly correct in the region where the rate of
change dU/dt has passed its maximum, as this will pick up the major contribu-
tion to the Fourier transform. Equation (35) should be a reasonable approxi-
mation in this sense as long as e = 1, and this may be sufficient to pick up
the important contribution to the vibrational transition cross section,
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The perturbation potential of equation (26) is next used to calculate the
transition probabilities, the cross sections, and the rate coefficients for
vibrational transitions produced by low energy collisions, where the small
perturbation method is valid. These calculations will illustrate the proce-
dures outlined in the General Discussion of the Problem.

TRANSITION PROBABILITIES, CROSS SECTIONS, AND RATE COEFFICIENTS

Vibrational Transition Probability

That part of the perturbation function which contributes to vibrational
transition has been approximated

2 2 P-p 2
= e (BYC 2 § e s 02 2 8% . I
U= e( > ) sech“ (at) SIS ( T )(51n 8 cos“ ¢ + g Sin” 6 cos ¢) (40)

The perturbation matrix element for simultaneous transition from quantum
state (v, L, m) to state (v', 7', m") is

2
H(v,Z,m;v',2',m') = 8(v,Z,m;v',2',m")e(n-) sech?(at) (41)
2

where the constant B(v, Z, m; v', Z', m') is the overlap integral

. _ *
S(V,Z,m,v',l',m')— wv|zym| wvzm

(42)

§2 (p—pe
sinh & 2L

2
)(sinz 9 cos? ¢ +%—sinL+ 8 cos”d)

These constants are evaluated in appendix A for the usual rigid-rotator,
harmonic-oscillator wave functions. Changes in vibrational quantum number are
limited to Av = *1, while changes in rotational quantum number are limited to
Al = 0, *2, +4., The changes in magnetic quantum number are limited to Am=0,
*2, #4 also, and these correspond to reorientation of the angular momentum
vector in space as result of the collision. The energy of the rigid rotator
does not depend on magnetic quantum number, so the transitions involving dif-
ferent initial values of m can be averaged to obtain a total transition
probability for (v, 1) - (v', 71'). Since the probability is proportional to
the matrix element squared, the values of B2 must be averaged to get the
total matrix element squared for a given transition (v, ) to (v+Av, I+A7).

B2 (Av,AL) = 1 :E: Bz(v,Z,m;v+Av,Z+AZ,m+Am{l (43)
m

AM=0, %2, %4 [ZZ+1

All of the transitions involved in this average have the same value of
circular frequency

14



EV'Z' - E

h

vi

w = w(Av,AL) = (44)

Although it is difficult to average over m in general, the average
approaches a simple limiting value for 7 >> 1, as shown in appendix A. This
limit will be used here, inasmuch as ¢ is the order of 10 or greater for
most of the collisions that occur in gases at the temperatures of interest,
kT ~ hw. Furthermore, the limiting average for large 7 1is independent of
7, which is fortunate in view of the averaging over a Boltzmann distribution
of rctational states that must be performed eventually.

According to the results in appendix A, the final values for the averaged
matrix elements squared are

. _(2 8% s 8% \[v+(1/2)*(1/2)
B2(+1,0) = (TE'* LA (Sinh2 a)[ Y ] (452)
41 +2Y = §2 , 28" 8% \|v+(1/2)£(1/2)
B2 (+1,12) = (30 105 2835)<Sinh2 5)[ SLZ o /h (45b)
A - st st v+ (1/2)+(1/2)
B2(+1,%4) = (22680><sinh2 5)[ SLZ0/h (45¢)

where u 1is the reduced mass of the diatomic molecule. The next term in the
expansion of the perturbatlon functlon of equation (25) will contribute some-
thing to the terms of order , but not to the lower order terms.

Note that diatomic molecules with electronic states other than l}: should,
strictly speaking, be described by symmetric top wave functions. However, the
projection of electronic spin and angular momenta on the internuclear axis is
rarely more than 3/2 quantum units in molecules of interest, so at high rota-
tional quantum numbers [, the perturbation of rigid-rotator wave functions by
electronic momentum should be small. Accordingly, we apply the above rigid-
rotator matrix elements to diatomic molecules in general.

The Fourier transform of the sech?(at) is a well-known integral

f (sech? at)e™’ dt = 73 csch o — 270 o (mw/2a) (46)
-0 a

2
2a (w/a)>>1 &

Thus, in the limit as (w/a) >> 1, which is a condition for small perturbation
theory to be valid, the transition probability becomes

b . [84_ ( ) ZﬂwJ o (T0/a) a7
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where the indices indicating the particular transition involved are dropped
for economy in notation. The terms P, w, and 8 are understood to represent
the values of P(Av,Al), w(Av,Al), and B(Av,AL). The latter two constants are
given by equations (44) and (45), respectively.

Vibrational Transition Cross Section

The collision cross section for the transition may be expressed

S = Pof 5 2rb db (48)
fo) o}

where P, represents the transition rate for head-on collisions when b = 0.
According to equation (47)

P ag\* - (mw/ag){(ap/a)-1]
P, ° ?) © (49)
and from equation (39)
-1/2
2 -p-a-a0-F) (50)

where a, = u/2L, o 1is the distance of closest approach, and o, will be
used to designate that particular value of o which occurs for head-on colli-
sions, that is, when b = 0. From the relation between b and o (see

eq. (30))
b2 = ¢2(1 - €) (51)

it follows that

_ -2, _ 2(1-g) g'!g]
2rb db = -mo [1 = P de (52)

For the exponential form of the interaction potential assumed here

~ '[(G‘Oo)/L] g_(_l _ l‘. (53)
e=¢ : de = ¢
and in this case, equation (52) becomes
27b db = -mo2 (1 . ZG—Ll—;i) de (54)
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Substituting equations (50) and (54) into the pre-exponential factor of the
integrand in equation (48), one obtains

5= J’l G2 e—(ﬂw/ao)[(ao/a)-l] de (55)
o 1 +

= (9
] €

It can be anticipated that if 'nw/ao >> 1, the major contribution to this
integral will come from the region where e =~ 1 and a = ay. Therefore, the
integrand of equation (55) will be expanded to terms of first order in (1 - €).
From equation (53)

0=Oo<l-—Ii—Zne)=co|:1+—L—(l—€)+...] (56)
S, 0o
Thus
2 ﬂ02[1+§—L(1-€)+..]
9 = 2 0 x g 2 (57)
1+£(1_€) |:1+£(1-€)+...] °
o € 0o
while from equation (50)
2o 1 2L
?"1—§<1'§—>(1'E) (58)
o}
Thus, to this approximation, the cross section becomes
1 - (mw/220) [1- (2L/5 ) ] (1-€)
S = mOZpO f e de (59)
o
This integration is easily performed to give
10P, - (mw/2a0) [1-(2L/04) ]
S = 1-e (60)

G -2

In the limit as (ww/2ay) >> 1, the cross section takes the form

4 2 2
o _ wcoz P = s 2Rmu? (nw e-(mﬂ/ao) (61)
= T 2L\ ‘0 = 2L \ ha 2a )

B D" T E i)
2ao 0o 0o
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The factor ﬂooz/(ﬂw/Zao)[l - (2L/00)] may be thought of as the effective
total cross section for vibrational transition to be used with the one-
dimensional collision transition probability P,. It can be seen that this
steric factor is not constant, as usually assumed, but because of the three-
dimensional nature of the collision, is approximately proportional to the
velocity, u, as suggested by Calvert and Amme (ref. 27).

In the other limit as ww/2a,[1 - (2L/ogy)] << 1, the effective cross
section approaches ﬂGoz, according to equation (60). This is a physically
plausible result, though the assumptions made tend to break down in this limit.

Vibrational Transition Rate Coefficients

The cross section is next averaged over a Boltzmann distribution of
collision energies to get the rate coefficient «

T © -X
a =< j; Sxe dx (62)

where x 1is the dimensionless collision energy mu?/(2kT), m 1is the reduced
mass of the collision partners, and W is the mean velocity (BkT/ﬂm)l/z. The
symmetry number (s) is unity for collisions between unlike molecules, but must
be 2 for collisions between like molecules, in order to avoid counting
collision systems twice in this case,

Some allowance must now be made to account for conservation of energy in
those collisions that cause vibrational transition. Rapp (ref. 19) lets the
effective collision velocity u be the average of initial and final veloc-
ities (uj + uf)/2, and Herzfeld (ref. 20) points out that this substitution is
necessary to reconcile the classical and quantum results. To terms of second
order this is equivalent to letting the effective collision energy be the
average of the initial and final energies.

2 mus
0 L he (63)

where uj 1is the initial velocity. The use of the +* sign depends on
whether the transition is to the adjacent lower or upper vibrational state,
respectively. The effective dimensionless collision energy x 1is,
accordingly

X = (64)

PR
*1 % 2KT
where x; 1is muiZ/ZkT, the initial value of Xx. The cross section has been
derived as a function of x, while the Boltzmann distribution of collision
energies given in equation (62) is really a function of xj, the initial

value. The variable of integration is changed from x; to x, and the rate
coefficient becomes
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o  +(hw/2kT) e _ hy -x
a=—e S(X){x ¥ e dx (65)
S ‘/fl‘w/sz ( ZkT)

The factor exp(+hw/2kT) is exactly that required so that the ratio of the
forward rate to the reverse rate is the Arrhenius factor exp(-hw/kT), which
preserves detailed balancing at equilibrium. The lower limit of the integral
is found to be the same for either excitation or deexcitation, since the exci-
tation cross section vanishes for collision energies less than how.

The cross section has been found as a function of the effective velocity
u in equation (61)

2
o 2m2,.13 -{21wL
02L 167B gzwL u (27wL/u) (66)
1 - 2=

Oo

It will be convenient to express this result in terms of the dimensionless
collision energy x and a characteristic energy E.

212
EC - meL (67)
Then equation (66) becomes
2 172
Life} -(G/x
S - __—gff ex1/2 o (G/ ) (68)
1 - 2=
90
where the constants F and G are
E 3kT 1/2
- 2 c
F = 64n8 ( e > (69)
E 1/2
- _<
G = 2% (kT> (70)
Substituting equation (68) into (65), one obtains for the rate coefficient
[o] /2
_ OF i(hU)/2kT) TTOOZ 172 hw “[X*’(G/Xl )]
oa—?-e 1_—£{x (x—z—kT‘)e dx (71)
hw/2kT Og
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The integrand has a sharp maximum primarily determined by the factor
exp-[x - (G/xl/z)]. This factor has its maximum where the exponent is a

maximum,
2/3 2 \1/3
(G (T Ec
*m = ('2‘) - (TT") (72)

The characteristic energy E. is several eV for most diatomic molecules,
and the constant G 1is the order of 10 to 100; therefore, the maximum occurs
at rather large values of x, just as we assumed when the corrections to the
pre-exponential factors and to the lower limit of the rate coefficient integral

were ignored.

The pre-exponential factors x1/2[x - (hw/2kT)] and o, in equation (71)
are evaluated at xp, and the exponent is expanded about xp

1/2 hw . 3/2
Xm (Xm - ?ﬁ) = Xn (73)

G _ 3 2
A . R ~ICEE LI (74)

2 © 2
= [ 7o -3xnt (hw/2kT -(3/ uxp)-x
4 I e SC/umem)? o)
1 - &2 hw/2kT

The integral in equation (75) is approximately

®  _3y2/ux A x
f e L Ak (76)
(o]

3

and the constant F expressed in terms of x; is
8kT z
F = 82<———> x, /2 (77)

so the rate coefficient finally becomes

1/2 2 2 .
_ B2 il) "o —(8kT Laso - 3xpt (hw/2KT)
YT (3 2t ) ") Cm e (78)
0o m
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where the distance of closest approach for head-on collisions at the energy

XpkT is
mu 2 Y
Op = -L In ( 2;_ > = L In (ﬁﬁ) (79)

The rate coefficient, expressed in terms of temperature and the
characteristic energy E., is

1
a-—Ei(iE)llz ﬂcoz (&CFYJZ(SNEC)Z(HZEC>1/6 e'3("2Ec/kT) /3ihw/2kT (80)
T s \3 1 2L mm haw kT
9o/,
where the total cross section at the velocity wup is
—_ 2
° nL2 7 A3
mo, g \"" 77K2T?E.
77 6 (81)
1-2= 1-
%’m In(A3/m2k2T2Ee)

Equation (80) demonstrates the familiar result (refs. 4, 11, 19) that In o
varies essentially as T3,

Rapp (ref. 19) called attention to one additional factor, due to long-
range attractive forces in the intermolecular potential, which can become
important at low temperature. If the depth of the potential well is A, the
collision energy is effectively increased by A before it is absorbed in
climbing the potential barrier. This amounts to a shift in the Boltzmann
distribution of collision energies by the factor exp(A/kT). Since this fac-
tor does not enter the integrations, it simply multiplies the final results of
equations (78) and (80).

Equation (78) or (80) gives the rate coefficient for a specific vibration-
rotation transition. The values of 82 and w will be different for different
transitions; recall that the indices specifying the exact transition were
omitted for convenience. Now, however, the total rate coefficient for a
given vibrational transition, a(Av), is obtained by summing the coefficients
for all possible rotational transitions, oa(Av,Al), and averaging over the
initial distribution of rotational states

a(Av) = E a(Av,Al) (82)

Al=0,%2 %4

This is accomplished by substituting for B£% in equation (80) an appropriate
weighted average, which is derived in the next section.
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Effect of Rotational Excitation

To a first approximation, the energies and the circular frequencies
w(Av,Al) are independent of the rotational quantum number Z. In the limit as
7 >> 1, the matrix elements averaged over all values of m, B2(Av,Al), are
also independent of 7, as shown in appendix A. Thus, the final matrix ele-
ment for a given vibrational transition Av may simply be taken as the sum

B2 (AV) = E B2 (AV,AL) (83)
Al=0,+2 ,+4

and this value used in equation (80) will give the first-order approximation
to the total rate coefficient for a given vibrational transition v to
v + Av.

In the second approximation, the small variations of w are taken into
account. To first order in v and 7, the energy of a given state is

E = hm(v +-%) ¢ BI(Z + 1) (84)

where B 1is the rotational energy constant. The circular frequencies for the
allowed transitions are

E - E
w(Av,AZL) = V+AV’Z+§Z v.l _ w[Av + ___ZEgl (Z + ———AZ2+1>] (85)

Since [ is normally large compared with unity, [(AZ+1)/2] will be neglected
compared with 7, and the approximate expression used for the circular
frequency is

w(Av,Al) = w[[w + (2;?31) Z] (86)

Then, approximate corrections to the first-order rate coefficient o(Av,0) are

273
a(Av,AD) _ [w(Av,AZ)]7/3 e—3xm{[w(Av,AZ)/w(Av,0)] -1

o (Av,0) w(av,0) (87)

R(Av,AL) =

Using equation (86), and setting w(Av,0) = wy, it is found that

w(bv,AL) <2BAZ>
Wo =1+ hwo L
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Since (2B/hw,) ~ 2x10"3  for typical molecules, the exponent in equation (87)
may be expanded and

7/3  -xp(4BAT/hwg)l
R(AV,0L) ~ E.+ (éiAZ> ?] e (88)
(o]

Dependence of R(Av,Al) on [ is removed when the correction factor is
averaged over a Boltzmann distribution of initial rotational quantum numbers

[eo)

- - kTYZ(l+
R(AV,AL) = é; E R(Av,AZ) (21+1)e (B/AT) L2+ (89)
1=0

An analytic approximation for this average can be obtained by replacing the
summation with an integral. Set

. - 2Blaz] (kT)l’z

hwo
g = Xph
2 - B
Y: = T (1 + 1)

kT 1/2
v~ (F)

Then

1}
o

w Cfveo) 2
R(AvV,AZ) ng (1 + )73 e Gree) 2y dy (——— > O) (90a)
0

- 2 £ -(y-2)?
R(AV,AL) eg-l. (1 -2xrxy)7"3e & 2y dy (%%-< o) (90b)
0

The integrand in equation (90a) has a maximum near y = 0 and in equa-

tion (90b) the integrand has a maximum near y = g. Using these values for y
in the pre-exponential term, and integrating the resulting simplified integral
gives

R(Av,AL) =1 - V1 g eg2(1 - erflgl) (%% > 0) (91a)
R(AV,AZ) = (1- xg)7/3[1+ /r g eg2(1 + erf[g])] (%% < o) (91b)
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These are combined to give a total correction factor for a given

laz].

R(AV,|AZ])=1- /r g eg%l - erf[g])+ (1- Ag)7/3[1+ /1 g eg%1 + erf[g]ﬂ

55—

e s
—

a
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Figure 3.- Correction factor R(Av,|al|) for
|aZ] =2 and L=0.2 and L=0.25.
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Figure 4.- Correction factor R(4v,|al|) for
|a7]=4 and L=0.2 and L=0.25.

24

eaoo (91b).

(92)

The correction factors given by
equation (92) are shown as functions
of temperature in figures 3 and 4 for
diatomic molecules N, and O, and for
typical values of L = 0.2 and 0.25 A.
It is seen that transitions v-=>Vv %1,

. > ¥2 can increase in probability by
factors of about 4 and that transi-
tions v > v *1, 7 - I ¥4 can increase
by factors of 10. The matrix elements
82 depend only on the absolute magni-
tude of the change in 7, so the total
correction for a given change |AZ|

is the sum of equations (91a) and

For all transitions involving
a given change in vibrational quantum
number Av, the weighted average value
to be used for 82 in calculating the
total rate coefficient is

B2 (AV) = E R(AV,AL)B2 (AV,AL)
Al=0,%2, %4
(93)
and
R(AV,AL)B2 (AV,AD)
o _Al=0,%2,%4
%o E B2 (Av,AL)
Al=0,*2 %4
(94)

This ratio is shown for O, and N

in figure 5 for L = 0.20 and 0.25 A.
The total transition rate is seen to
increase by factors of 1.5 to 2 when

8000 coupled rotations are taken into

account. Such an effect could simply
be swallowed by the empirical cross-
section factor in the one-dimensional



collision model, of course, but in the
absolute three-dimensional model a

po— Ng L=25R o mm—m— " factor of this size makes some differ-
/’"_,—«— ence in the fit of theory to data.
Pl Oz L=.25A
_Lg—/z’/ o It may be helpful to summarize
R 7 . here the essential formulas for the
1.8 Ne L=2A — particular rate coefficient «a;q,
T e which is of primary interest. The
— 0z L=.2A . L !
7= ' potential parameters A and L, the
://’/’,,,—————*"—' reduced mass m, and the symmetry num-
LeL | ! 1 i ! i ber s are all determined by the two
' 2000 3000 4000 5000 €000 7000 8990 ¢ollision partners involved; the cir-

Figure 5.- Total rotational correction for
the rate coefficient, R = (a/cag).

cular frequency wg,, the equilibrium
interatomic distance p,, the molecu-
lar reduced mass u, and the rota-
tional energy constant B are all

characteristic of the diatomic molecule which is vibrationally de-excited.
In terms of these parameters and the thermal energy kT, the rate coefficient
for de-excitation from the first vibrational state is

82, an\' 2 (BTEN rgry S (m2Ee\ S -3 (n2E¢/KT) 1/ 3+ (huo/ 2KT)
@10 = 73 (?) Shmo (ﬂm> kT e (95)
where the cross section S is
_ 2
7L2 (Zn A° )
7K 2T2
S = 9 1T6k T<E¢ (96)
1- —
In(A3/w2k2T2E,)
and the characteristic energy E. 1is
212
mw*L
Ec = —5 o7
. The constant B%O is given by
' 2 _ m hwo &% 2 62 st _1__6225“—_—-(5”—
®10 = 161 Ec sinn? ¢ [(;5*’35*‘630 * \35* 105 * 2835 ) R(-1-2) *\ 77,680 ) R(-14)
(98)
where
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RCLI82)) = 1- /7 g of (1 - exelgh+ (-7 2[1 + /7 g o8 (1 + exfle])]
(99)

with A = (2B|AZ|/hw,) (kT/B)1/2 and g = A(w2E./kT) !/ 3.

These results will later be used to make some comparisons with experiment,
and to deduce some values of the potential parameters A and L which best fit
vibrational relaxation data.

CONSERVATION OF TOTAL ENERGY

We now consider the effects produced when conservation of energy is
extended to include both the inelastic transfer of energy that occurs when
vibrational transition occurs, and the elastic but nonadiabatic transfer of
energy that occurs because the vibrational mode is transiently excited by
collision (refs. 21, 22). In the following discussion an elastic collision is
defined as one where no net change of kinetic energy is produced. The elastic
collision may be adiabatic, meaning that internal modes of energy do not par-
ticipate in the collision process; or the elastic collision may be nonadia-
batic, in which case the internal modes of energy participate transiently.

The inelastic collision is one where permanent transition occurs in one or
more modes of internal energy, with a corresponding net change in kinetic
energy. All inelastic collisions are also nonadiabatic, of course.

The usual perturbation used in semiclassical and classical analysis of
the vibrational excitation problem is elastic and adiabatic in form, but, as
pointed out earlier, the inelastic quality of the collision is approximately
accounted for by letting the effective collision velocity be the average of
initial and final velocities. This simple strategem does not fully account
for inelastic and nonadiabatic effects, however. The perturbation is also
asymmetrically distorted by the transition, and, in addition, the vibrational
modes of the diatomic molecule are transiently excited during collision,
whether or not transition occurs (refs. 21, 22). The corrections required
because of these inelastic and nonadiabatic collision effects will next be

assessed.
Effects of Asymmetrical Distortions to the Collision Trajectory
When the collision is not adiabatic, the trajectory is asymmetrically

distorted by permanent transfer of energy from or to the kinetic mode, and the
classical conservation equation for energy

E=T+U (100)
does not hold. In this case, U 1is a skewed function and such an asymmetric

function may be represented by
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-(%5%)

where ¢ 1is a constant. With this form for the potential, the relative
velocity between collision partners is

U = ﬁbe = eEeqt sech? at (101)

T = 2a tanh at - q (102)
and the constants a and q may be made to fit the limiting conditions
I‘(—oo) = -uj and i‘(°°) = Uf.
uj + ur
8= g
uj - uf
4= 720

For the transitions of interest, one quantum of energy is involved so
that

g-(ui2 - ufz) = +hy

and this equation can be combined with the two previous equations to yield

2(ui? - ug®) h
q . 1 = ¢+ 1w
: CERE t o (103)

The probability of a transition is appreciable only when the collision energy,
E, is large compared with hw, and so, only when q/a << 1.

With the interaction potential of equation (101), the transition
probability is

2
* L2 cE *2
Pv,vil - Bv,vil (ﬁa) |7~ (104)
where
F* = @ J’ ¢dt sech? at 't 4t (105)

=00

This transform is evaluated in appendix B, where it is found that

4 2
|F*[2 = 4NZG§) O_+ 37) g-Muw/a (106)

w
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Therefore,

e mu? 27w q? -mw/a
e (B E ) (e f)e o

Except for the factor [1 + (q2/w2)], this expression for the transition
probability is the same as the earlier (eq. (47)) result which follows from an
assumed adiabatic trajectory. This factor (q/w)? represents the correction
for skewness in the shape of the interaction potential, and its size is easily
estimated with the aid of equations (97) and (103).

@) - @) - fa

For collisions of interest, (hw/Ec) < 10-! and (hw/E) << 1, and so

(8) ~ w0

This size for the correction factor leads to the conclusion that the major
effect of distortions to the trajectory induced by vibrational transitions is
accounted for by defining (refs. 19, 20) the effective collision velocity, u,
to be

-+
ul Uf

u = 5

and that the transition probability is only slightly affected by the
asymmetrical part of the distortion.

Effects of Adiabatic Symmetrical Distortions

In order to examine the effect of trajectory distortion caused by
temporarily stored vibrational energy, it is first necessary to develop an
expression for this quantity, V, as a function of time. This is done in
appendix C with the help of simple relations, found by Kerner (ref. 24), for
the energy excited in a classical oscillator and quantum transition probabil-
ities for a harmonic oscillator. For transitions from the ground state (on
which interest is here centered for comparison with observed relaxation data),
the total number of vibrational quanta excited in all states is given by
exactly the same expression as by small perturbation quantum theory,

2

t .
V(t) = hwP(t) = g2 f UCt)et®t at (109)

]
h
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In this equation, the subscripts 0, 1 on P and B are omitted for convenience,
and it is assumed that U 1is an exponential interaction potential. Also in
appendix C, the coefficients of the expansion of V(t) about the turning point
(t = 0) are found by differentiating equation (109).

V(t) = Vo + Vot + %—Votz +
BZUOZ
Vo = o (110a)
Vo = Vg = Vg = 0 (110b)
iv 282w .
Vo' = 22yl (110¢)

Next, an interaction potential U*(t) will be found which simultaneously
produces the correct vibrational excitation and satisfies the conservation of
total energy

E=T+ U* +V

Again the assumption is made that the potential is of simple exponential form
U*(t) = U; exp ‘_ [T_(LLZ_G]} (111)

but r(t) in this equation is distorted from its usual adiabatic collision
value. Then

by

Ux = - T U (112)
which may be combined with
22
_ mr
T="=
to give
mL2 (ﬁ* >
1= (2) (113)

This expression for the kinetic energy in the conservation equation yields
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V(t) = E - [Eﬂf{ <£fi>2 + U*] (114)
7\ T

This equation is evaluated at the turning point and combined with equa-
tion (110a) to give

* \2 21 %2
_ mL2 US * | _ B U0
Vo = E - [—7——<ﬁg> + U0 - (115)
But equation £112) shows ﬁz = 0 since fo = 0, and so equation (115) may be
solved for Ug.
u* = 55%- 1+ Ao AEZE (116)
6 28 huw

This same procedure may be used to find values for higher derivatives of U*
at the turning point when equation (114) has been differentiated repeatedly.
For example, after it is differentiated twice,

o e N2 o ves . b
. subUs (U UgUg U
_ 2 ovo 0 0-0 0 Frk
VO = mL U*3 - <TJ‘;‘ - ;J-*—z'— -3 ﬁg - UO (117)
0
0O O

This equation is solved for ﬁ; by using Vo = 0 from equation (110b).

. ux"
* (o]
Uz = - —7 (118)
Similarly,
Tg = 0 (119)
* 2 %3
gtV oMo 280 v 120

and higher derivatives can be found, if necessary.

Return, now, to the exponential dependence of U*(t) on 7r(t) in
equation (111). For an adiabatic collision trajectory,

exP{— [Eiflil_g]} = sech? at

with a = u/2L. This makes plausible the functional form for nonadiabatic
collision, that is, one where the internal modes of the colliding partners
take part in the energy transfer
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exp l— [TﬂE%T;_Q]} = ¢(t)sech? at

when 7r(t) is distorted by transiently stored vibrational energy. Therefore,
it is assumed that

U*(t) = UZe(t)sech? at (121)

The function ¢(t) is near unity since the collision energy is large when
compared with the stored vibrational energy, and it is not unduly restricted
by the assumption, physically realistic, that ¢(t) - constant as |t| + =.
This last assumption is used with the derivative of equation (121) to give

a = u/2L as before.

The transition probability, P*, is influenced most strongly by the
behavior of U*(t) near the turning point, and the expansion

U*(t) = U§ sech? at{og + oot + %EﬁotZ + L (122)

will be sought. The first coefficient is found to be
b = 1 (123)

by evaluating equation (121) at the turning point. The first derivative of
equation (121), also evaluated at the turning point, reduces to

U*
(o)

.-
= qu)o

and since U; = 0, it follows that

6 =0 (124)

Further differentiation of equation (121) and use of equations (118), (119),
and (120) gives the expressions

.U Ug
-9 2 - _ _© 2
¢0 = U(’; + 2a " + 2a (125a)
9, =0 (125b)
3 %3

: 4u? R2UT w

iv o} 2 o 2% 4
bo = 5w -3 oz *12a%,-16a (125c¢)
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The expansion for ¢(t) can be written

(t) =1 + c(at)? + d(at)™ +

where
¢ = So_
2a?

and
J- oo iV
24a"

and will be terminated after the term containing t". This is justified by
the fact that only the behavior of ¢(t) inside the interval [at[ <2 is
important. Outside this interval, sech®at changes very slowly, and since
¢(t)sech? at must remain close to sech? at, its Fourier transform

F* = UL[ q>(1:)sec:h2(a’c)eiwt dt (126)

receives nearly its full magnitude from -2 < at < 2. Therefore, it is taken
that

U*(t) = Uj sech?(at)[1 + c(at)? + d(at)"] (127)

is the interaction potential which produces the correct amount of stored
vibrational energy and, at the same time, satisfies total energy conservation.
The evaluation of its Fourier transform, F*, to obtain the transition
probability proceeds by contour integration.

In order that F* may be evaluated, the integrals

[e ) . © n .
fn = f +I sechz(at)elwt dt = éf (%) sech? xe(lw/a)x dx (128)

co

must be found. But these integrals can be treated in the same manner, using
the same contour and limiting process, as is used in appendix B for a slightly
different integrand. The residue at the isolated singularity inside the

contour 1is

n-1

e (@) (3 ) ()

2a 22

and for w/a >> 1,
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n+l.n

~ i T iTw  -mw/2a
fn = 21T1Rn ——n—l n+o
2 a
so that
w z -tw/2a w2¢  wtd
* ot - — - =
F* = 27 (a> e (1 4 = ) (130)
and

2

y
A2 2) e~ﬂw/a 1 - T°¢c | n'td
T \d 4 16

If P* 1is used to denote the corrected transition probability, after the
temporarily stored vibrational energy is accounted for, then

=

2
|F|

P*

eE z 2
B\ZN, fTE) | F*] (131)

and

e [P
HE

However, when equation (130) is compared to equation (46) whose right hand
side is F/w, this ratio is seen to be

r)® _(, _ n%c _ n'aY
‘ I - 4 16

and therefore

2 41\2
* _mfc _m'd
P* = <1 - e > P (132)
where P 1is the transition probability of equation (47), and where

B2E
hw

2 *
2|y, (Vo) | 1 (Ue\(BUs g)2+c
3 E 36a2 E how (a

The effect of the correction factor is to make, roughly,

[aN
I
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P* ~ % p (133)

Consequently, the collision cross section, S* (eq. (4)), and the rate
coefficient, o* (eq. (5)), are diminished by this same factor. But, the
decreased rate coefficient implies (cf. eq. (6)) a relaxation time, t*, which
is about 5/2 times 1, the relaxation time predicted by the theory which does
not incorporate the effect of the temporarily stored vibrational energy.

COMPARISON WITH EXPERIMENT

There is no lack of data on rates of vibrational relaxation as a function
of temperature (ref. 7). The experimentally determined quantity is the relax-
ation time T, and according to equation (6) the product of 1 and the
pressure p 1is

kT

pt = S — - (134)
@10[? _ e—(hw/kT)]

In this equation a,p is the rate coefficient for transitions from the first
excited state to the ground state, given by equation (95). This connection
between the analytically derived o and the experimentally obtained <t pro-
vides a means for testing the analysis. At the same time, it yields a method
for determining effective values for the molecular potential parameters, A
and L.

The procedure begins with selecting a molecular species and collision
partner and assuming trial values for A and L to describe the intermolecular
potential. Thereupon, the rate coefficient a39(T, A, L) from equation (95)
determines, through equation (100), a relaxation time T which can be com-
puted for chosen values of temperature and unit pressure. These computed
values will be (nearly) collinear on a Landau-Teller plot, and the slope and
ordinate of this line can be adjusted by changing the trial values for A and
L. A combination of values for A and L can be determined by eye which pro-
duces the best agreement between the theoretical line and experimental data.
This combination is taken to be an acceptable approximation to the effective
values of these parameters. An example of the result of this procedure is

shown in figure 6 for 0,-Ar collisions and in figure 7 for N,-N, collisions.

It will be noticed in figure 7 that the slope of the pt 1line is not
quite correct for perfect agreement between theory and experiment. This
observation leads to the suspicion that further adjustment of A and L will
yield even better agreement than is shown, but this is not the case. Further
adjustment to improve the slope moves the line vertically and degrades the
overall agreement. Also shown in figure 7 is the relaxation time predicted
for the delta function potential calculated by Meador (ref. 30). This
predicted relaxation time is the order of 100 times larger than observed, and
some remarks will be made later about this difference.
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Figure 6.- Landau-Teller plot of vibrational Figure 7.- Landau-Teller plot of relaxation time
relaxation for 0,-Ar collisions. for N,-N, collisions.

The above procedure has been applied to a variety of diatomic species
undergoing collisions with an atomic or diatomic collision partner. The
results are given in table 1 where two sets of intermolecular potential param-
eters are shown. The pair A,L were deduced using the semiclassical method
without correction for conservation of total energy, and when this correction
was made, their counterparts A*,L* were obtained. Comparison of these pairs
shows that the sizable difference found earlier

T*“-g—”c

produces only slightly deviating forms for the exponential intermolecular
potential. Close numerical agreement of the two sets of constants makes it
difficult to ascertain which pair furnishes better agreement between experi-
ment and theory. Hence, the pair A,L produced by the more simple,
uncorrected semiclassical theory will be used in the remainder of this paper.
Care must be taken in using these values for the constants at extrapolated
temperatures. Neither the experimental data nor assumptions made in the
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analysis can be meaningfully extended to temperatures sufficiently high for
dissociation to become a competing process with vibrational excitation.

The accuracy of the values given for A and L cannot be assessed
quantitatively. A possible approach to constructing table 1 is to find com-
binations of A and L that make the pt 1line fit the experimental data best
in the least squares sense. However, the numerical problem posed by this
approach has proven to be without a distinct solution. There is a spectrum of
combinations of A and L that appear to be equally valid from a numerical
least squares standpoint. Other numerical attempts have also proved
disappointing, and it was necessary that the pt line be fit to the data
subjectively. However, experience in choosing trial values for A and L
gives assurance that the '"best' value for L can be determined within
10-25 percent and for A within a factor of 2 or 3. In general, the more

stringent confidence limits apply for heavier collision partners.

Attempts to evaluate A and L for the halogen gases were without reward
for Br, - Brs, and I, - I, collisions, and there is near-indeterminacy for
Cl, - Clpy. The experimental data (ref. 31} for these gases are obtained by a
measurement of sound absorption at temperatures very low relative to the other
data. A Landau-Teller plot of the halogen data is, anomalously, a nearly hori-
zontal line. Except for chlorine, no combination of A and L predicts a
slope small enough to give meaningful agreement, and even for CIl, the values
of L required to fit the data seem to be abnormally small (the order of

0.05 A).

A direct numerical comparison of experimental and calculated pt-values
is made in table 2. The computed values were obtained using the combination
of A and L found in table 1. It is to be noted that the comparison is made
at temperatures which lie at or near the ends of the temperature range where
A and L are fit to the experimental data. These are the temperatures where
pTexptl and PT a1c differ most (see figs. 6 and 7) in that range. Conse-

quently, table 2 gives bounds for the discrepancy between theory and experi-
ment. Also, since pt varies linearly with T-1/3 on a Landau-Teller plot,
table 2 can be used to construct a counterpart to figures 6 and 7 for any of
the species listed.

Strictly speaking, the CO data should be evaluated with a more general
theory for heteronuclear molecules, since the effective potentials for C and
0 atom interactions can be different. Corrections for the asymmetrical cen-
ter of mass should be small in this case, however, and the homonuclear mole-
cule theory may be expected to give an approximate average interaction
potential, corresponding to the random orientation of the molecular axis that
occurs in the experiment. Dipole interactions affect the long range forces,
but probably do not contribute largely to the steep part of the potential
responsible for vibrational transitions.

Fitting vibrational relaxation data is widely conceded to be a rather
inaccurate way to determine intermolecular potentials. Nevertheless, such
potentials are so urgently needed for analysis of a wide variety of atomic and
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TABLE 1.- VALUES OF THE POTENTIAL PARAMETERS (A,L) AND (A*,L*)

Species

Partner

0,
Ar
He
Hp
Np
Co
Hyp
He

A(eV)

800
800
550
300
700
850
300
400

Calculated delta function model

147
350

TABLE 2.- COMPARISON OF

spectes | Coltisien
- g2 o 0>2:

05 Ar

0, He

0, Hy

No N2

co Co

Co He

Cco Hop

0.

0

LA

19

.24
.26
.27
.23
.19
.28
.27

.47
.40

A* (eV)

900
900
600
300
800
900
350
500

L*(A)

0.18
.23
.26
.26
.21
.18
.27
.26

Approximate range
of T, °K

500-5,000
1,000-5,000
300-2,000
300-2,000
2,000-8,000
1,200-6,000
300-2,000
300-2,000

1,000-10,000
1,000-10,000

EXPERIMENTAL AND CALCULATED RELAXATION TIMES

0.058

T—l/3

.079
.1

.126
.079
.1

.087
. 149
.1

.149
.058
.079
.058
.079
.1

. 149
.1

. 149

pt, atm-sec
Experimental | Calculated
4.,0x10-7 5.8x1077
6.0x107° 7.2x107°
1.0x10" 4 1.2x10°"
2.5x10-3 2.2x1073
3.0x107° 3.1x107°
8.9x10° 4 1.2x1073
1.0x107° 0.5x10°®
4.0x10"5 6.0x107°
3.8x1077 3.2x1077
2.4x1078 3.7x1076
6.6x107° 9.3x1076
7.4x107 4 5.3x107*
1.9x1076 2.5x107°
6.8x10"° 6.6x1075
2.9x107° 2.7x10°°
2.6x10°3 3.0x10"3
2.8x1076 2.9x1076
6.8x10"> 6.8x10"°
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melecular problems, and so little information about these potentials exists,
that there is always a strong temptation to evaluate the potentials as done in
table 1, just to see what relations appear.

First of all, the results are generally consistent with similar attempts
made with one-dimensional vibrational excitation theories. Any one-
dimensional theory can only be used to determine L, not A, since it can fit
only the slope and not the absolute magnitude of the data on a Landau-Teller
plot. Schwartz, Slawsky, and Herzfeld (ref. 11) obtained reasonable agreement
with data (within a factor of 20 or so) when they chose L to fit the
repulsive part of a Lennard-Jones potential, U = e[(ro/r)12 - (ro/r)G]. They
found that L = r0/17.5, and for values of 71y determined from relatively low-
temperature viscosity data (ref. 32) this gives L = 0.2 A for 0,, N, and CO.
Benson and Berend (ref. 33) chose to fit the repulsive part of a Morse poten-
tial, U = Up[(1 - e @%)2 - 1], and they presented values of a that best fit
measured vibrational transition rates. In this case, L = 1/2a, or L = 0.25 A
for 0,, No, and CO. Rapp and Sharp (refs. 21,22) and Treanor (refs. 25,26)
both used L = 0.2 A for their calculations of N,-N, vibrational excitation.
These values are about the same as given in table 1 and are within the
uncertainty inherent in fitting the data.

However, it seems to have generally been overlooked that all of these
results from vibrational relaxation theory are different from estimates of
N,-N, and 0,-0, potentials that have been deduced by other methods. Mason and
Vanderslice (refs. 34, 35) developed a delta function model for calculating
short range intermolecular forces, and Meador (ref. 30) refined this method
and applied it to N,-N, collisions, showing that it agrees well with the
potential for such collisions given by Amdur, Mason, and Jordan (ref. 36), who
deduced this potential somewhat indirectly from Ar-N, and He-N, scattering
measurements. Meador (ref. 30) then applied this same delta function model to
0,-0, collisions; in this case experimental verification is lacking. Meador's
values of A and L are listed in table 1, and it can be seen that L is con-
siderably larger than deduced from vibrational relaxation while A is smaller.
At the collision energies of interest (0.1 - 1.0 eV), the delta function poten-
tial is less steep and of longer range. The shallower potential results in a
more adiabatic collision, smaller excitation probability, and larger relaxa-
tion time (as shown in fig. 7). The expansions involved become doubtful for
these large values of L, so the exact numerical results for Meador's poten-
tial should not be taken too seriously, but the qualitative effects should be

valid, at least.

The disagreement between the potentials is not surprising, when one
considers that a multiplicity of interaction potentials exist for molecular
collisions, just as for atomic collisions, depending upon how the orbital and
spin momentum vectors add up. Scattering is primarily produced by the long-
range outer potentials that correspond to the largest total spin and degener-
acy, such as calculated by Meador (ref. 30). On the other hand, vibrational
transitions are undoubtedly due to interactions that proceed along shorter
range, steeper potentials that occur when some of the spins are paired, and
vibrational relaxation rates are presumably telling us something about the
shape of these inner potentials. However, a number of factors prevent us from
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deducing precise quantitative values for these inner potentials from
vibrational relaxation data. Perhaps the most serious is that the semiclassi-
cal method uses the spherical average of the true potential and does not
account for energy adiabatically transferred to and from the vibrational mode
during the course of the collision. This effect is dramatically shown in the
numerical calculations of Sharp and Rapp (ref. 22). The perturbation is not
really the simple adiabatic scattering impulse assumed in equation (35), even
though this shape has been traditionally used in all semiclassical analysis of
the problem, but is distorted by the temporary transfer of energy into high-
order vibrational modes, and is also slightly skewed by that small portion of
the energy transferred irreversibly. Even where changes in impulse shape are
relatively small, the effects on the Fourier transform can be sizable. Thus,
the potential deduced from vibrational relaxation measurements should be
thought of as an "effective' potential which incorporates the effect of energy
stored in the vibrational mode, and it should not be interpreted as a pure
interaction potential.

Several other approximations involved in the theory may be sources of
error also, particularly at higher temperatures. One of these is due to the
fact that small perturbation probabilities become the order of 0.1 at the
velocities uy for the highest temperature data, and at this point become
sizably greater than the actual transition probabilities (refs. 24, 26). How-
ever, this error is compensated because multiple step transitions occur at
these temperatures, and the total energy transferred is the same in either
case. A second error which decreases the relaxation rate at high temperature
occurs because the upper limit of the integral for the cross section is then
finite, leading to the result of equation (60), rather than the approximation
of equation (61) which is valid for very small transition probabilities. A
third error occurs at high collision energies because the expression for the
perturbation potential (eq. (19)) should include higher order terms in the
expansion of the distances 1r| and r,. Finally, the real interaction poten-
tials are not simple exponentials. Thus, different effective values of L
and A could be used for different ranges of temperature and adjusted to fit
data exactly.

In spite of the uncertain interpretation of the potentials used, the
simple theory can be fit to observed vibrational relaxation data reasonably
well. The best fit is excellent when the colliding partner is an inert atom
such as Ar or He, which is the type of collision that the theory is designed
to describe. The correlations are only a little worse for collisions such as
02-05 and Ny-Np. The principal point to be emphasized is that the "effective
potentials'" deduced from these correlations are not necessarily realistic for
other purposes.

DISCUSSION OF RESULTS

Perhaps the most satisfying result from this study of vibrational
excitation is that the problem has been treated analytically in three dimen-
sions, and the cross sections and the rate coefficients are expressed as
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relatively simple functions of temperature and the interaction potential
parameters only. To first order, the results show the same functional
behavior as one-dimensional models. This behavior confirms the qualitative
results in reference 16 and further justifies the widespread use of the
one-dimensional model for analyzing vibrational relaxation data.

The relative simplicity of the semiclassical model compared with the
method of partial waves (which gives slowly converging results in three-
dimensional quantum treatments) has made it possible to retain fully analytic
expressions all the way to the final rate coefficients. The results clearly
show how vibrational transitions (predominantly Av = *1) are accompanied by
simultaneous rotational transitions (predominantly Al = 0, *2), an aspect of
the process that has often been ignored. The effect of these coupled rota-
tional transitions increases the total vibrational transition rate from 50 to
100 percent at typical conditions. This effect went unnoticed in one-
dimensional theory because it could simply be absorbed in the empirical steric
factor involved in that theory. Herzfeld and Litovitz (ref. 37) -and others
have pointed out that such coupled rotations must occur in three-dimensional
collisions, however. Also, the three-dimensional model permits one to evalu-
ate effective values for both the scale factor A and the range factor L of
the intermolecular potential by fitting vibrational relaxation data, whereas
one-dimensional models permit only the factor L to be determined. Both
models give about the same values for L, the order of 0.2 A. The value of A
given by the three-dimensional model is reasonable, the order of several hun-
dred eV for typical interactions. These potentials are much steeper and of
shorter range than known scattering potentials, and we suggest that this
occurs primarily because vibrational transitions are produced most frequently
when the interaction proceeds along one of the shorter range, steeper poten-
tials that obtain when some of the electron spins involved are paired. How-
ever, the "effective" potential for vibrational relaxation should probably not
be interpreted as a pure interaction potential in any case, since it also
includes the effects of potential stored in high vibrational modes during
collision.

Although the interpretation of the potentials derived may be questionable,
the semiclassical theory of vibrational excitation can be fit reasonably well
to most relaxation-rate data if the appropriate effective potential is chosen.
The theory appears to contain enough realism to be suitable for investigating
some other facets of the vibrational excitation problem; for example, the
effects of anharmonicity, vibration-vibration exchange, heteronuclear
molecules, and perhaps triatomic molecules.

The square of the transition matrix elements decreases in size fairly
rapidly as |AZ| increases, but the transition probability increases rapidly
if Av and Al have opposed algebraic sign because the energy difference
between states involved in the transition is then decreased. The combined
effect of these two factors is that transition probabilities for |az| = 0,2
are about equal, while those for |AZ]| = 4 are about an order of magnitude
smaller. Higher order perturbation terms can increase the later transitions
somewhat and contribute some higher order, even number changes Al as well,
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but it appears that Al = 0, *2 will remain the dominant rotational
transitions which are coupled to the vibrational transitions Av =

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, April 8, 1970

1.
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APPENDIX A
EVALUATION OF THE CONSTANTS B2 (Av, AZ)

In this appendix, the overlap integral

B(v,Z,m;v',7',m’ )-f f f y* (v',7',m' )[51nh G(ZL ><sin26cos2 ¢
=0 =0 =0

2

8% ik 4 2 <
+ &z sin 6 cos %X]w(v,l,m)p sin 6 dp d6 do¢ (A1)

will be evaluated. The square, B2(v,Z,m;v',7',m') = B2(v,I,m;V+Av,l+AZ,m+Am)
will then be averaged over all possible values of m and, with the assumption
that 7 >> 1, it will be found that this average is independent of 7. Thus,
for vibrational transitions from a fixed vibrational level, the averaged
squares are functions of Av, AZ, and Am only; B2 (Av, AL, Am). Since these
squares are proportional to the transition probability, they may be combined
in the manner probabilities are combined.

BZ(Av, AL) = Z BZ(Av, AL, Am)
Am

EVALUATION OF THE OVERLAP INTEGRAL

The unperturbed wave functions w(v 7 m)(p,e,¢) and w(v' 7t m,)(p,6,¢)

that appear in equation (Al) are, respectively, the wave functions of the
rotating and vibrating diatomic molecule before and after the collision. For
a rigid-rotator, harmonic oscillator these wave functions can be written:

, -@2le-p)?
d)(v,Z,m) (p,e,¢) = Yzm(e;¢) CV -{_J_ e HV L‘/a(p_pe)]

In this equation, HV[/FTp -p )] is the vth Hermite polynomial and the

Iml(cos 8), the asso-

(e ¢) are spherical harmonlcs expressed in terms of PZ

c1ated Legendre functions of the first kind.

1m¢clm| lml

= 7 (cos 6)
T

Yzm(e;(b) =

The normalizing constants are expressed
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/
ciml _ [ZZ+1 (7 - |ml)!]1 2
A 2 (T + 1m)!

(A2)

where

It is seen that equation (Al) can be written
*

62 m 2T
B(v,Z,m;v',2',m') = SITh S Ilf f YZ'm'(e’¢) (sin3 6 cos? ¢
6=0 “¢=0

2
+ %;—sinS 6 cos™ ¢) Y, (68,4)de d¢ (Ad)

with

I, = j%a-j;m CVC\,'HV.(x)HV(x)xe_X dx (x = Va(p - De))

The orthonormal properties and recurrence relation for the Hermite polynomials
which will be used to evaluate I, can be found in mathematical texts (e.g.,
ref. 38, p. 308). These properties are

[es] XZ
L7 Hy oty (xe” dx

=0 (v #v")
(A5)
= 2Vviv/r = Va/C\? (v =v")
and
XHy (x) = 3 Hyyy () + VHy-) () (A6)

—x2
When this last equation is multiplied by e x H,, (x) and then integrated over

(0, ), there is obtained

e} —X2 1 © _x2 o Xz
Hyr (X)Hy (x) e X dx = 7 Hyyp (XHp{X) e dx + v Hy_ ) (X)Hyr (x)e dx
o} o o

(A7)
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When equation (A5) is used with equation (A7), it is seen that the right-hand

side of (A7) is zero unless vVv' = v * 1. Therefore,
C.,C o 2
_ vty -X T A 1=
I; = —ZWJ; HV, (x)H,, (x) xe dx = 5T o when v'=v+l (A8a)
- L /——Y— when v'=v-1 (A8b)
2L 20
=0 when v'#vzl (A8c)

The integral of equation (Al) may now be written

o8 N L0 (g, 1) (A9)

Bv,Lmvt, 1w = g TS

where (v + 1,0) is equal to v + 1 or v accordingly as v' =v + lor v -1,
and where

2m T
1 i(m-m' (m'| . im| Im' | . iml
IZ:Z_”J‘ e ( ) cos? ¢ d¢ CZ' CZ f PZ' (cos 6))51n39PZ {cos 6)ds
0 0 (A10)
and
2w . ™
82 1 i(m-m') ¢ 4 m'| .lml im'| . 5. olm]
I3——6— [—ﬁj; e cos™ ¢ d¢ CZ' CZ ] PZ, (cos 8)sin>s PZ (cos 6)de
(A11)
The method for evaluating each of these integrals will be demonstrated

separately. In order to facilitate notation in what follows, |m| will be
written as m.

27 il
(1) 1I,= ;_Wf ei(m_m')d) cos? ¢ d¢ CI;:CI;] PI;: (cos 6)sin3 6 P?(cos 6)dse
o}

(o}

The first integral in equation (Al0) can be written

2T . f
1 ol (m-m')¢ cos2 ¢ do = 2_17r-l:[ cos (m-m")¢$ cos? ¢ do + 1 f

2 - il

i ™

sin(m-m"¢ cos? ¢ dq;}
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The second integral on the right-hand side has symmetric limits and an
integrand which is an odd function. Its value is therefore zero. To evaluate
the first integral write cos? ¢ = (1 + cos 2¢)/2. Then

21 . k) ™
—2—1}— A e1(m—m')¢ cos?¢ d¢=zl?j:ﬂ cos {m-m')¢ d¢+4—1w_f cos 2¢ cos{m-m')¢ d¢

-

The first integral on the right-hand side is equal to zero unless m' = m, in
which case its value is 2w. The second integral is zero unless m' = m #2,
when its value is w. Hence, the chosen form of the interaction potential
(eq. (19)) permits only the changes m' =m, m+ 2, or m - 2 by a collision.
Accordingly,

1 .

5 if Am =0 oom £ om o

I, = [Cz'cz f P7, (cos 8)P (cos e)sin36de}
T if m= %2 °

If x = cos 6, then

1
m' m R | ]
c cZ P7, (cos 8)P)(cos 8)sin® o do= 12,6=c’2,c’£‘ !; p‘;,(x)(l-XZ)Pgl(x) dx

The associated Legendre functions are orthogonal in (-1, 1):

1
_[1 p‘;, (x)Prg(x)dx

=0 (Zr #10 (Al2a)
= (cHr @ =1 (A12b)
They also satisfy the recurrence relations
A2 -1 PTTNG0 = (- mxPT00 - (2+mPY () (A13)
- zzl+1 [(Z -m+ PG () + (L m)P?_l(X)] (A14)
Py, (0 = P70+ 2L+ V%~ 1 PN () (A15)

These relatlons hold for real and complex x. For x in [-1, 1], the

radical x> - 1 which appears in (Al13) and (Al5) is complex. However, these

relations will be used to develop formulas involving (1 - x?) which is real in
the interval.
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It has been found that Am can take on three possible values in Iy,
(dm = 0, *2), and for each of them, I, 5 will have a separate value:
>

1
(@) 1, 41,230 = c?,c? N P?,(x)(l - xz)P?(x)dx

1
m+2 .m m+2

21 Cy (x) (1 - x2)P (x)dx

C

() 1, o(2,175%2)

1
() 1, (,1'5-2) c?jzc?.l' P?:Z(x)(l - x*)PT(x)dx
? -1

Each case must be con51dered separately, and notation will further be
abbreviated by writing pT (x) = PZ

1 1
. = m oph
Case (a): 12,6 = CZ'CZ (.[1 PZ'PZ dx - -[1 Py x7Py dx)

When the orthogonality property (Al2) is applied to the first integral on
the right-hand side of the above equation, 1t is seen that this integral is
zero unless L' = I when its value is 1/(C )2

The second integral on the rlght can be evaluated by multiplying the
recurrence relatlon (A14) by (XPZ')’ and then applying this same equation to
the terms Z I and xPZ . Wwhich appear in the result. Finally, it is

obtained that

m Z+m

2pM _
Py XPy = Ei:i’{zz 7 L@ -m)PYPY, & (Zem- 1P, PY 2]l

7-m+1 1 m .m m _m
o Pl LR LA R e e

When both sides of this equation are integrated over (-1, 1), the orthogonal-
ity relation (Al12) shows the right side of the resulting equation to be zero,
except when 7' =7 or 7 + 2 or L - 2; that is, for Al = 0 or *#2. The
results are:

(Z+m) (Z-m)  (I-m+1) (Z+m+1)
(27+1) (27-1) = (21+1)(27+3)

(A1=0, Am=0)=1 - (Al7a)

2 ,0
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— 172
. o | (Z-m+1) (Z-m+2) (Z+m+2) (Z+m+1)
12,6( 2,8) (27+1) (21+3)2(21+5) ] (AL7b)
F(1+m)(1+m-1)(z-m)(z-m-1)]l’2
-2 = - St A e Al7
T2,0(-2:0) (21+1) (22-1)2(22-3) (a17¢)

1
Case (b): I g (L',15+2) = C?TZC?.I. P?Tz(l— xz)P? dx
» -1

In this case, the recurrence relations (A13) and (Al4) are used to write

m2 The preliminary result of combining

. m m
PZ' in terms of PZ'+2 and PZ'—Z'

these two equations is

- /X2 p?*l = ?%?T [(Z+1n+ 1)(Z+-m)P?_1 - (Z1-m (- m+—1)P?+1] (A18)

and from this equation comes

2 1
_ /;Ei—f p?+ = 57T [(Z+1n+ 2)(Z+m+ 1)P?ji - (T-m-1)(- m)P?:i]

This last equation is then multiplied by vx%2-1 and equation (Al18) is
e /71 Gt L
applied to terms involving vx%-1 P?ti and /x2 -1 pI7} Finally, it is

7+1°
derived that
7]

(1- xz)Pm+2 _ (2'+m+2) (1'+m+1) [(Z'+m—1)(l'+m) pl _(1'-m-1) (2'-m) ph

AN 272'+1 27'-1 i'-2 27'-1

pl (2'-m+1) (2'-m+2) om ]

/A 277+3 pZ'+2

(2'-m-1) (Z'-m) [ (2'+m+1) (1'+m+2)
‘ ’fﬁﬁii____—'[ YA

(A19)

This equation is multiplied b pT and the resulting equation is integrated
q P y 7 g eq g

over (-1, 1). It is seen once more that the orthogonality relation (Al12)
precludes rotational transitions in which ' is not equal to 7 or to
. £2. The results are:

(Z+m+2)(Z+m+l)(Z—m)(Z-m-1)]1/2 (A20a)

I 0,+2) = -2
2,6( +2) [ (21+3)2(21-1)2
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) [(Z+m+4)(Z+m+3)(Z+m+2)(Z+m+1)]l/2

I 2,+2 A20b
2,6(+ +2) (21+5) (21+3)2(21+1) ( )
1/72
_ 1 (I-m=-3) (1-m~2) (I-m-1) (Z-m)
I, g(-2:%2) = [ (21+3) (27-1) 2 (21+1) (A20¢)
m-2_.m ! m-2
. . — - - 2ypl
Case (c): IZ’G(Z',Z,—2) = CZ' CZ » PZ (1-x )PZ dx
Here, the recurrence formula (Al5) is used repeatedly to obtain
m 2 -2 _ 1 1 m_m 1 m_m 1 m_m 1 m_m
AL P ¢V AFS ) <zzv+3 PP~ 273 PP c o PP oy pzpzv49
and this equation is then integrated over (-1,1) to get
1/2
B (Z+m) (Z+m-1) (Z-m+2) (Z-m+1)
L), (0,-2) = *2[ 21:3) (21-1) (A21a)
172
(Z-m+4) (Z-m+3) (Z-m+2) (Z-m+1)
i +2,-2) = - A21b
2:6( ) [ (21+1) (21+3)2(21+5) ( )
172
(Z+m) (Z+m-1) (Z+m-2) (Z+m-3)
I . (-2,-2) = - A2lc
2,9 [ (27+1) (21-1)2(21-3) ] ( )

This completes the evaluation of T,(Z,7';m,m') = I,(AZ,Am), and it is
seen that this integral can take on a total of nine different expressions, one
for each combination of the three allowed changes, AZ, in the rotational
quantum number and the three allowed changes, Am, in the magnetic quantum num-
ber. If it is assumed that 7 >> 1, each of these expressions can be simpli-
fied. For example, a reasonable approximation for I, e(0,0), using 1 >> 1,
is g

1 (Z+m) (Z-m) (Z-m+1) (Z+m-2) 1 - 2(1%-m?) - 12+m?

(27+1) (27-1) -~ ~(@2IL+1)(27+3) 472 212

Therefore,

12+m?

12 (A22a)

1
1,(0,0) = 5 1, ,(0,0) ~
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Similarly,

1,(0,2) = % I, 4(0,2) ~ Z;g@ (A22b)
1,(0,-2) = 3 I, 6(0,-2) ~ ZZ;‘Z (A22¢)
1,(2,0) = % I, §(2,0) ~ ZZ;@ (A224d)
12(2,2) = 7 I, ((2,2) ~ (ig;‘%z (A22e)
1,(2,-2) = 7 1, 4(2,-2) = (;’22 (A22f)
I,(-2,0) = ;— I, ¢(-2,0) ~ - Zz;‘z (A22g)
12(-2,2) = % I, 5(-2,2) (;‘2‘%2 (A22h)
Ip(-2,-2) = & I, o(-2,-2) (ig’zgz (A22i)

.. 2|1 2m L i(m-m")¢ m' m T .5 m
(ii) I3=—6—2——j; cost ¢ e de CZ'CZ . PZ'(cos 0) (sin 6))PZ (cos 8)ds

m

The first integral on the right in the equation for I3 can be written,
with the use of cos" ¢ = (1/8)cos 4¢ + cos? o - 1/8, as

1 [ i(m-m')é 1 (" 1 [
5= i cos" ¢ e dq>=?‘[TT cos? ¢ cos(m-m')¢ d¢—mf cos(m-m') d¢

-1

1 m .
+ 161Tf cos 4¢ cos(m-m')¢ do
-1
It was found earlier that 1
= if m' =m
2
m

L cos? ¢ cos(m-m')¢ d¢ = 1 if m' =m %2

2T o 4 -
0 otherwise
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Hence, after evaluating the second integral,

if m' =m

1 (%" 4, i(m-m")$ : 1 (7
—Z?-I(; cost ¢ e d¢ = if m'=m £2 * 16m j:ﬂ cos 4¢ cos(m-m')¢ d¢

S b oot

otherwise

]

The last integral vanishes unless (m - m') 4, in which case its value is

equal to w. Consequently,

-% if m' =m
2m . '
L cost ¢ oL lm-m')e d¢ = L if m' = m #2 (A23)
27 4
1 . . -
3 if m' =m %4
and the integral vanishes for all other values of m'.
When x = cos 6, the integral
L= P (cos 8) (sinS 0)P"(cos 6)d6 = CT T 1 P™ (x) (1 - x2)2P™(x)d
3,87 "L Jo LR Z EREARN AN SRR
Now
(1 - x2)2 = (1 - x?%) - x2(1 - x?)
so that 13’6 becomes
] 1 | 1 1 1
_~m' _m m _ m _ ' om m'c o 2yqpl
I3’G-CZ,CZ 2 P, (1 xz)PZ dx - C;,C; [1 Py, [x*(1-x*)]P; dx
m' m o 2 251N
=12,9_CZ'CZ f_l PZ,[x (1-x )]PZ dx
Since 12 5 has already been evaluated, it remains only to evaluate the
integral ’
. n'm 1 om 2 2+ 1p
11, = ¢C) f_l PP [x2(1 - x2) 1P dx (A24)
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In order to carry out this integration, the recursion relations obtained from
equations (Al5), (A16), and (A19) will be used. For example, if we use
7 >> 1, equation (Al6) may be written

Py, x2P7 ”‘Z;—z [2(12-m2)1> P+ (Z+m)2P], BT+ (2-m2pT, Z+2] (A25)

This equation is multiplied by x2 to give

PY, xPT 4—;7 [2(22- n?)PY, x?P7 + (L+m)2Py, x?P]_ + (2 - m)2Px?P], 2] (A26)

In similar ways there are obtained

R R R AR L R SR oy
(A27)

m_o 24 pM-2 1 m_o_ m m o, m m_o . m
sz (1-x )PZ, e ZETY-[ZPZX PZ,— PzngZ,+2— sz pZ'_z] (A28)

m m- L 1 m m-2 m m-2 m 2
Pz(l - XZ)ZPZ' P ZEE [ZPZ(I- XZ)PZ' - Pz(l- x2)pZ'+2— Pz(l— X ) ?, ] (A29)

It has been found that Am can take on five possible values in Ig,

(Am = 0, *2, *4) and for each of these, I; 6 will have a separate value:

o (82,0), Ié’e(AZ,Z), Ié’e(AZ,-Z), Ié’e(AZ,-4), Ié’e(AZ,4)-

1 1
. ' m _o,m a m m m _ ;. m
Case (a): I} ,(AZ,0)=Cy,C] PPy dx- C7,C; f_l P7,X"P7 dx

When equations (A25) and (A26) are integrated over (-1,1) and the usual
orthogonality conditions are applied,

Z2_ m2 (Zz_ m2)2 (ZZ_mZ)Z

(0,0) =~ - -
0 ) 272 VA YA
Therefore
12-m?® 12-m® 3 (1%2-m?%)?
6(0:0) =1, 4(0,0) - 13 (0,0) ~ 1- 522 " o2 Y8BT 7w
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and

2 2_2 2_.252
15(0,0) ~ g'%T [1 Em %-(Z m?) ]

)

- 1ZSZ

- (324 + 21%n® + 3n*)s2
In a similar way, it is found that

13(2,0) ~ - gpr (L4-m)62

I3(-2,0) ~ - (1%-m*) 62

1
641"

-27%m2+m"*)s2

1
15(4,0) ~
3(4,00 ~ oo m

1

el (1%-272m%+m") 82

I3(-4,0) ~
2

(A30a)

(A30b)

(A30c¢)

(A304)

(A30e)

Further, it is seen from equations (A26) and (A25) that 13 6 = 0 for any

values of I' except 1' =1, 1 %2, and 7 #4.

1
Case (b): T! ((a2,2) = c?fz cy PYVZ[x2(1 - x2)]P] dx

The integration of equation (A27) over (-1,1) reduces the problem to the

integration of equation (A25) over (-1, 1) with I' = 1, 7 #2, and 1 #4.

results are

52
1500,2) = % (1, 4(0,2) - 1} ,(0,2)]

1
4

(1% - m*) 82

~ -

1
6414

1
13(2,2) v ——— (Z+m)2(22 - Im+ m?)82
3(2,2) Py ( )< ( )

(2-m)2(L+ Im+m?)8?

I3(4,2) ~ (Z+m)3(2-m)s?

4'—&
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(A31b)

(A31c)

(A31d)



1

13(-4,2) =~ -
41"

(Z+m)(Z-m)3s2 (A3le)

1
Case (c): I} .(bl,-2) = c?jzc?.l. P?:z[xz(l-xz)]P? dx
? 1

To integrate over (-1,1) equation (A28) reduces the evaluation of
Ié e(AZ,—Z) to repeated integrations of equation (A25) over (-1,1). Again,
3

only the results will be given:

1

I5(0,-2) %-m*)s2 A32a
3( ) 17" ( ) ( )
13(2,-2) ~ - 9;24 (Z-m)2 (12+7m+m2) 82 (A32b)
I3(-2,-2) v - L (2+m)2(22-Im+m2)s2 (A32c)

961"

1
I15(4,-2) v ——— (Z-m)3(Z+m)82 A32d
3( ) o4l (Z-m) > (Z+m) ( )
N 1 3 2

I3(-4,-2) ~ - ——=p (Lm) * (Z-m)8 (A32e)

1
. _ m-4 .m m-4 252 m
Case (d): T, o(AZ,-4) = C;\ Cy J:1 PY, ' (1-x2)%p) dx

These integrals can be evaluated by integrating equation (A29) over
(-1,1). This reduces the problem to repeated integrations, over (-1,1), of

m 2vph-2 1 m,m o mom _ plym
PI(1-x2)P) " ~ Zif'(zplpl' P7PY, o) PZPZ,_Z)

which is obtained by dividing equation (A28) by x2. The expressions
obtained are:

1

13(0,-4) ~ (Z-m)2 (Z+m)282 (A33a)
5614
~ 1 3
I13(2,-4) ~ - TIE (Z-m)3(1+m) 62 (A33b)
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L (2-m)3(1+m)s2

I3(-2,4) ~
3 3

841H
I3(4,-4) ~ - ——p (1-m)"s2
g 6x2561
T3(-4,-4) & ———p (L+m)*s2
6x2567"

1
Case (e): I, .(AZ,4) = cg“,””c‘;f p‘;“”(l-x2)2p‘£ dx
’ -1

Evaluation of these integrals by methods shown earlier gives

15(0,4) ~ 5214 (12-m2)262
132,84 ~ - = (L) (-m)s?
I15(-2,4) ~ SSiZ” (Z-m) 3 (Z+m) &2
15(4,4) ~ 6—?1“—4 (Zm)¥s2
T15(-4,4) ~ EZE%EZ: (1-m)%s2

(A33c)

(A33d)

{(A33e)

(A34a)

(A34b)

(A34¢)

(A34d)

(A34e)

This completes the evaluation of I3 for all allowed combinations of Am and

Al, and makes it possible to write expressions for the overlap integral

(eq. (A1)
. _ 82 Vv+1,0
B(v,l,m;v+Av,l+AZ,m+Am) = SRS ILe (I,+1I3)
For example,
. §2 Yv+1,0 [ 22+m? 1 I 2 9o TN
B(v,Z,m,v+Av,Z,m)-—B(Av,O,O)-Sinh 5 L 2 + L (32*+27%m%+3m™) &
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COMBINATION OF THE 82 (Av,AZ,Am)

The expression for the overlap integral is dependent on m (Z,. . .,-2,-1,
0=m=1,2,. . .,l) and yet the energy of the molecule is independent of m,
which only describes the orientation of the angular momentum vector. There-
fore, an average, over all possible values of m is more agpropriate for use
in energy exchange problems. However, it is not B but B“ that is propor-
tional to the transition probability, and the average B2 over all possible
m will be sought.

This average 82 will be found subject to the assumption that 1 >> 1,

since I5(AZ,Am) and I3(AZ,Am) have been derived on the basis of this
assumption.

— n=
BZ (Av,AL,Am) = 7%if :EE B2 (Av,AZ,Am) (A35)
m=-17

The sum on the right of this equation can be found exactly, but the same
results are arrived at by writing

_ A
82 (Av,AL, Am) A = 82 (Av,AL,Am)dm
2t J,

The average B2 is, of course, independent of m.

Instead of deriving B82(Av,Al,Am) for each possible combination of Al
and Am, one such derivation will be made, and the result of this same proce-
dure applied to the other combinations will be stated. The example chosen is
B(Av,0,0), whose square is

(22+m2)2+ 1

B2 (Av,0,0) = X [(Z%2+m?) (31%+212m2+3m"*) 62

167" 25616
s L (97841276m2+187%m*+1272m6+9m8) ¢ (A36)
12828
where
B 82 >2(v+1,0
“ \sinh 6§/ \41L24
Then
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_ Z
82 (Av,0,0) = 717[ 82 (Av,0,0)dm
-1

L2 T
“‘K(W*?ﬁ‘s +_—8960‘5)

(A36)

In a completely analogous way, the averaged squares below can be found.

1 52

—_— —_— —_— —_— 64
B2 (Av,0,2) = B2(AvV,0,-2) = BZ2(Av,2,0) = B2 (Av,-2,0) =K + +
( ) ( ) ( ) ( ) 23.3.5 22.3.5.7 27.32.5

— — S —_ b
87 (Av,0,4) = B2(Av,0,-4) = B2 (Av,4,0) = B2 (Av,-4,0) = K <__6—*>

29.32.5.7
BT(hv,2,2) = B2(Av,-2,-2) = K 2L . 36787 56336
o T 28.5 29.3.5.7 212.3%.5.7
—B—Z—(Av 2,-2) = _B_E(Av,-Z,Z) =K 1, 1762 . 3838"
’ 28-5 29.3.5.7 212.34,5,7
82 82 82 PV 2338%
82 (AV’2,4) = BZ(AV’4’2) = BZ(Av,_Z’_4) = BZ(AV,—4,—2) =K <215.3I+.7>

—~ = = T _ 238"

B2 (Av, 2,~4) = B2 (Av,-4,2) = B2 (AV,4,-2) =8 (AV,—2,4)—K("——~—215_34_7
FYa a7 i

B (Av,4,~4)= B7(bv,-4,4) = K| —15—¢

- vy _ . [5118"
B (AV’4:4)"B (AV,—4,-4)—K <218.3L\t

Each of the squares EEIAV,AZ,Am) is proportional to the transition

(A37)

(A38)

(A39)

(A40)

(A41)

(A42)

(A43)

(A44)

probability P(Av,AZ,Am). The total transition probability, for all possible

values of Am is given by

P(Av,AL) = ) P(Av,AL,4m)
Am

Consequently, the constant, R2(Av,Al) to be used in computing this transition

probability is
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BZ(AV,AL) = Z B—ZCAV,AZ,Am)
Am

and when these sums are carried out, using the results of equations (A37)
through (A44), it is found that

2 1 1

2 _ - L <2 u

B (£1,0) = K (15 *35 8" * 535 ¢ )
11 2

2 _ . 2 L

B(1,%2) = K (30 * 705 87 * 7835 ¢ )

2 —
82(+1,+4) = K (7776@6)

where

2 2
_ ( §2 ) [mhw(v+l,0)] _ ( §2 ) (v+1,o
~ \sinh § 16uE. ~ \sinh 8§/ \ 4124 )

*1.

and (v+1,0) = v+1 or v accordingly as Av
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APPENDIX B
CALCULATION OF COLLISION IMPULSE FOURIER TRANSFORMS

A slightly asymmetric collision perturbation of the form
u(t) = erqt sech? at (B1)

has been used to account for the effects of irreversible excitation of
vibrational energy during collision. The dimensionless Fourier transform of
this impulse is

F* = wf edt sech? (at)e®t dt (B2)

This integral, which can be written

F* = %-J. ela/a)x o po y L W/a)x 4 (B3)

-0

will be evaluated by contour integration. Accordingly, we integrate the
complex integral

.fre(Q/a)Z sech? z e(iw/a)Z dz

about the rectangular path shown in the sketch. The integrand is analytic at
all points interior to this contour except at the pole 1z = (7i/2).
Consequently,

(-C+wi) (C+mi)
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J~C eqx/a sech? x ei(w/a)x dx+:{lﬂre(q/a)(C+iY) sechz(c+iy)e(iw/a)(c+iY) dy
-C o

. f‘c o(a/) (x+mi) (o oo (Gw/a) (i) g
(&4

O - - - -
+i.f eoq/a)('c+ly)sech2(—c4-iy)e(lw/a)('0+1Y) dy = 2mi [ﬁesidue at %%] (B4)
m

When we take 1lim of both sides of this equation, we get
CHro

.fu)e(q/a)x sech? x e(tw/a)x 4. [1-e(ﬂ/a)(qi"w)]

- oo

+ i lim f” W/ (eriy) (o o jyyeie/a) (eriy) 4
Cro fo)

0 . . . .
+ i 1lim .f. e(q/a)(—c+1y) sechz(—c4-iy)eclw/a)(_C+IY) dy = 2ﬂi[Residue at %;J

Croo

™
(BS5)
Since sech? z = 1 + tanh? z, and 1im tanh z = 1, it is clear that
Z> o
0 . . i

lim ‘[ e (a/2) (-c+iy) sechz(—c+i}’)e(lw/a)(_C 1y) dy
Crow m

< lim w e(q/a)(—c+1y)[1 + tanh?(-c + iy)]eclw/a)(-C+IY) =0 (B6)

C>o

The second integral in equation (BS) is treated by writing its integrand in
terms of exponentials.

(q/a) (c+iy) e L(a/2) -2+ (iw/a)] (c+iy)

(iw/a) (c+iy) _ e
1+ 2e-2(c+iy) . e-u(c+iy)

sech?(c+ iy)e

gly) = e

(87)
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Since (q/a) << 1, it follows that (q/a) - 2 < 0 and therefore
lim g(y) = 0. Hence,
Co

lim
Ccroo

. _ : :
f W) (1Y) socn2(c + 1y)e TW/D (Y] g ¢ 1in nlg| = 0 (8)
(o} e

and equation (B5) becomes

. . Ti
Jﬁ e(q/a)x sech? x e(iw/a)x dx = 2ﬁl[R€Sldue o ?T] (B9)
. [ (7D @]

In order to find the residue of

£(z) = a/a)z oUw/a)z

sech? z

at z = wi, it is of help to write

[(9-iw)/a]z :
£(2) cosh? z q(z)

where both p(z) and q(z) are analytic at =z = 7i/2, and can therefore be
expanded about that point.

() r (e 3 EEA (3

(z - %;)2 [q"cﬁf/Z) LG (o), _]

If we carry out the division of the series, we obtain

f(z) = (B10)

(H) :ZJQ' (ni/2) 2 p(ni/2)q"' (ni/2) '

2 LU GV R LU GYD) - (B11)

) F )

and the residue is given by

f(z) =
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L JE(3)
Residue at %;—= -

o(7) (%) - - (L iu) Llarie/a)] (ni/2)

a

Finally,

-2wmi (q + iw) e[(q+iw)/a]('rri/2)
a | a

F* = Q-Jﬂ e(q/a)x sech? x e(iw/a)x dx =

a | - Jl(aiw)/alni
(B12)
and for (ww/a) >> 1, this gives
Fr = 4 %ﬁ?-(w - iq)e” (Tw/2a)
so that
2 w\' -(rw/a) 2
|F*|" = 472 (—) e (1 + 97> (B13)
a W

The factor [1 + (q%/w?)] represents the correction to the usual adiabatic
collision transition probability, which is due to the asymmetrical factor e9%t
in the impulse function.
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APPENDIX C

VIBRATIONAL ENERGY AND ITS DERIVATIVES AT THE

COLLISION TURNING POINT
Consider a diatomic molecule subject to the perturbation
1
U=1Ug + 5-(grad We ¥y (c1)

where y = (p - p_.), the oscillator coordinate. When the molecule is ini-
tially at rest (yi = 0), the maximum amplitude of classical motion induced at
any time t is, according to Green's method

t 2 t 2
_ (grad U)e o d . (grad U)g sin e de
Yo = T cos wt dt e v in w

so that

t (grad Vg it
ym={f ——Z—U-u-)-——ewdt (C2)
The net amount of vibrational energy excited is, in units of hw
2
2y 2 t .
AE _ H@7Yq 1 iwt
£ = o - Thoe = Suhae ‘[m (grad U)e e dt (C3)

This classical result is exactly the same as the quantum probability of
transition 0 <> 1 given by small perturbation theory

2
t .
e = Pg1 = f}l_f Hgy elwt dt (C4)
where Hpy 1is the harmonic oscillator matrix element
h 172
- ® _
ot = QG *l0lv) = (g)  Cerad 0, (cs)
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P

When the transition probability becomes too large for small perturbation
methods to apply, Kerner's solutions of Schrodinger's equation are used. The
probability of transition m +> n due to a forcing function acting on a
harmonic oscillator is found to be (ref. 24)

P (t) = min! e'eem‘”“s;n(e) C6)
where the polynomial Sy, is
— 3 -3
- o (-D)7e
Smn (€) ‘2: (- H13Tm =3 ©n
j=0

For present purposes, transitions from the ground state are of interest.

n_-¢
_ee

on ~ nl!

(C8)

Note that Py; reduces to the usual small perturbation result (eq. (C4))
when & is small. Also the sum of all P is unity as it should be. The

on
total energy in all vibrational modes is
V = hw nP_ . = hwe = e (C9)
= on ~ n - 1!
n=0 n=1

Where the interaction potential is exponential, (grad U)
equation (C9) can be expressed

U/L and

2
t .

V(t) _ _ B01 int

o T h o Ue (e I (€10
which is the result used in equation (109). Hereafter, we shall drop the
subscripts on B8 and U for convenience.

The vibrational energy at t = 0 is
2
sz 0 0 2
Vg = 5 f U cos wt dt| + f U sin wt dt (c11)
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The first integral on the right is negligibly small compared with the second.
The latter can be treated by repeated integration by parts to give

0 . veee
. U, U U Uo
.I:OOUSIIlwtdt——Tﬁ'-;?—?ﬂ"...——-w— (C12)
where we have used the fact that U and -all its derivatives vanish at
|t| = ». Thus, to terms of first order in w~!
B2Uo?
Vo =~ (C13)

The derivatives of V at t = 0 are obtained by differentiation of
equation (C10). The cosine transform of U and all odd derivatives of U
at t = 0 are taken to vanish

0
f U cos wt dt = Uy = Uy = 0 (C14)

(o]

which is equivalent to neglect of asymmetrical terms in U and V. Then the
results are

Vo = Vo=V, =0 (€15)
2 .
vy = ZBh‘” Uolo (C16)

The vibrational energy at the turning point is seen to vary essentially
as t“. These results are valid for any impulse function U(t) where the
duration of impulse is long compared with w~!, provided only that U varies
exponentially with distance between the collision partners. Similar relations
obtain in the more general case, only U is then replaced by (L grad U).
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